A completely separable family from $s \le a$ A completely separable family from $c < \aleph_\omega$ Bibliography

Constructing special almost disjoint families

Dilip Raghavan

National University of Singapore

Winter School in Abstract Analysis, International Center for Spiritual Rehabilitation, Hejnice January 30, 2014

イロト イポト イヨト イヨト

Outline

1) A completely separable family from $\mathfrak{s} \leq \mathfrak{a}$

2 A completely separable family from $\mathfrak{c} < \aleph_{\omega}$

Building a completely separable family

Theorem (Mildenberger, R., and Steprans [1])

If $\mathfrak{s} \leq \mathfrak{a}$, then there is a completely separable family.

- The basic framework is contained in this proof. It is also the simplest.
- Easy to see that a completely separable family exists if a = c.
- (Balcar, Simon, Vojtas): They exist if any one of these holds:
 s = ω₁, b = b, or b ≤ a.
- The hypothesis $s \le a$ is weaker than all of the above.

Building a completely separable family

• $\mathcal{F} \subset \mathcal{P}(\omega)$ is said to be (ω, ω) -splitting if for each collection $\{b_n : n \in \omega\} \subset [\omega]^{\omega}$, there exists $a \in \mathcal{F}$ such that $\exists^{\infty} n \in \omega [|a \cap b_n| = \omega]$ and $\exists^{\infty} n \in \omega [|(\omega \setminus a) \cap b_n| = \omega]$.

Definition

 $\mathfrak{s}_{\omega,\omega} = \min\{|\mathcal{F}| : \mathcal{F} \subset \mathcal{P}(\omega) \land \mathcal{F} \text{ is } (\omega,\omega) - splitting\}.$

• Note that $\mathfrak{s} \leq \mathfrak{s}_{\omega,\omega}$ is clear.

Building a completely separable family

Lemma

 $\mathfrak{s} = \mathfrak{s}_{\omega,\omega}.$

Proof.

Case 1: $\mathfrak{s} < \mathfrak{b}$. Let $\langle e_{\alpha} : \alpha < \kappa \rangle$ be a splitting family. Suppose it is not (ω, ω) -splitting. Fix $\{b_n : n \in \omega\}$ witnessing this. In other words, for each $\alpha < \kappa$ there is $i_{\alpha} \in 2$ such that $\forall^{\infty} n \in \omega \left[\left| b_n \cap e_{\alpha}^{i_{\alpha}} \right| < \omega \right]$. WLOG, the b_n are pairwise disjoint. Now, for each $\alpha < \mathfrak{s}$ define $f_{\alpha} \in \omega^{\omega}$ as follows:

$$f_{\alpha}(n) = \begin{cases} \sup(b_n \cap e_{\alpha}^{i_{\alpha}}) & \text{if } \left| b_n \cap e_{\alpha}^{i_{\alpha}} \right| < \omega \\ 0 & \text{otherwise} \end{cases}$$

Building a completely separable family

Proof.

By hypothesis the first case occurs for all but finitely many *n*. Since $\mathfrak{s} < \mathfrak{b}$, find $f \in \omega^{\omega}$ such that $\forall \alpha < \mathfrak{s} [f_{\alpha} \leq^* f]$. Choose $k_n \in b_n$ such that $k_n > f(n)$. Then $\{k_n : n \in \omega\}$ is an infinite set not split by any e_{α} .

Building a completely separable family

Proof.

By hypothesis the first case occurs for all but finitely many *n*. Since $\mathfrak{s} < \mathfrak{b}$, find $f \in \omega^{\omega}$ such that $\forall \alpha < \mathfrak{s} [f_{\alpha} \leq^* f]$. Choose $k_n \in b_n$ such that $k_n > f(n)$. Then $\{k_n : n \in \omega\}$ is an infinite set not split by any e_{α} . Case 2: $\mathfrak{b} \leq \mathfrak{s}$. Proof by picture on the board.

Building a completely separable family

Proof.

By hypothesis the first case occurs for all but finitely many *n*. Since $\mathfrak{s} < \mathfrak{b}$, find $f \in \omega^{\omega}$ such that $\forall \alpha < \mathfrak{s} [f_{\alpha} \leq^* f]$. Choose $k_n \in b_n$ such that $k_n > f(n)$. Then $\{k_n : n \in \omega\}$ is an infinite set not split by any e_{α} . Case 2: $\mathfrak{b} \leq \mathfrak{s}$. Proof by picture on the board.

Lemma

If $\langle e_{\alpha} : \alpha < \mathfrak{s} \rangle$ is (ω, ω) -splitting, then for any infinite a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ and for any $b \in \mathcal{I}^+(\mathscr{A})$, there is $\alpha < \mathfrak{s}$ such that $b \cap e_{\alpha}^0 \in \mathcal{I}^+(\mathscr{A})$ and $b \cap e_{\alpha}^1 \in \mathcal{I}^+(\mathscr{A})$.

Building a completely separable family

Lemma

Let $\langle e_{\alpha} : \alpha < \kappa \rangle$ witness $\kappa = \mathfrak{s}_{\omega,\omega}$. Let $\mathscr{A} \subset [\omega]^{\omega}$ be any a.d. family. Then for each $b \in I^+(\mathscr{A})$, there is an $\alpha < \kappa$ such that $b \cap e_{\alpha}^0 \in I^+(\mathscr{A})$ and $b \cap e_{\alpha}^1 \in I^+(\mathscr{A})$.

Proof.

We may assume that there exist an infinite set $\{a_n : n \in \omega\} \subset \mathscr{A}$ such that $\forall n \in \omega [|a_n \cap b| = \omega]$ (otherwise it is easy). Let $\alpha < \kappa$ be such that $\exists^{\infty} n \in \omega [|e^0_{\alpha} \cap a_n \cap b| = \omega]$ and $\exists^{\infty} n \in \omega [|e^1_{\alpha} \cap a_n \cap b| = \omega]$. α is as needed.

Building a completely separable family

• Say $\kappa = \mathfrak{s} = \mathfrak{s}_{\omega,\omega}$ and say $\langle x_{\alpha} : \alpha < \kappa \rangle$ is an (ω, ω) -splitting family.

Building a completely separable family

- Say $\kappa = \mathfrak{s} = \mathfrak{s}_{\omega,\omega}$ and say $\langle x_{\alpha} : \alpha < \kappa \rangle$ is an (ω, ω) -splitting family.
- Construct $\langle a_{\alpha} : \alpha < \mathfrak{c} \rangle$ and $\langle \sigma_{\alpha} : \alpha < \mathfrak{c} \rangle \subset 2^{<\kappa}$ such that:

$$\forall \alpha < \mathfrak{c} \forall \xi < \operatorname{dom}(\sigma_{\alpha}) \left[a_{\alpha} \subset^{*} x_{\xi}^{\sigma_{\alpha}(\xi)} \right]$$
$$\forall \alpha < \beta < \mathfrak{c} \left[\sigma_{\alpha} \neq \sigma_{\beta} \right].$$

• Observe that if $\alpha \neq \beta$, then by (2), a_{α} and a_{β} are a.d. *unless* σ_{α} and σ_{β} are comparable.

Building a completely separable family

- Say $\kappa = \mathfrak{s} = \mathfrak{s}_{\omega,\omega}$ and say $\langle x_{\alpha} : \alpha < \kappa \rangle$ is an (ω, ω) -splitting family.
- Construct $\langle a_{\alpha} : \alpha < \mathfrak{c} \rangle$ and $\langle \sigma_{\alpha} : \alpha < \mathfrak{c} \rangle \subset 2^{<\kappa}$ such that:

$$\forall \alpha < \mathfrak{c} \forall \xi < \operatorname{dom}(\sigma_{\alpha}) \left[a_{\alpha} \subset^{*} x_{\xi}^{\sigma_{\alpha}(\xi)} \right]$$
$$\forall \alpha < \beta < \mathfrak{c} \left[\sigma_{\alpha} \neq \sigma_{\beta} \right].$$

- Observe that if $\alpha \neq \beta$, then by (2), a_{α} and a_{β} are a.d. *unless* σ_{α} and σ_{β} are comparable.
- Main point: At a stage $\delta < \mathfrak{c} \mathscr{A}_{\delta} = \{a_{\alpha} : \alpha < \delta\}$ is "nowhere MAD" i.e. if $b \in \mathcal{I}^+(\{a_{\alpha} : \alpha < \delta\})$, then there is $a \in [b]^{\omega}$ such that $\forall \alpha < \delta [|a \cap a_{\alpha}| < \omega]$ (and also a node σ associated with *a*).

Building a completely separable family

- If $b \in I^+(\mathscr{A}_{\delta})$, then look for least $\alpha_0 < \kappa$ such that $b \cap x_{\alpha_0}^0 \in I^+(\mathscr{A}_{\delta})$ and $b \cap x_{\alpha_0}^1 \in I^+(\mathscr{A}_{\delta})$.
- There is a unique $\tau_0 \in 2^{\alpha_0}$ such that

$$\forall \xi < \alpha_0 \forall i \in 2 \left[\tau_0(\xi) = i \leftrightarrow b \cap x^i_{\xi} \in I^+(\mathscr{A}_{\delta}) \right].$$

Building a completely separable family

- If $b \in I^+(\mathscr{A}_{\delta})$, then look for least $\alpha_0 < \kappa$ such that $b \cap x_{\alpha_0}^0 \in I^+(\mathscr{A}_{\delta})$ and $b \cap x_{\alpha_0}^1 \in I^+(\mathscr{A}_{\delta})$.
- There is a unique $au_0 \in 2^{\alpha_0}$ such that

$$\forall \xi < \alpha_0 \forall i \in 2 \left[\tau_0(\xi) = i \leftrightarrow b \cap x^i_{\xi} \in I^+(\mathscr{A}_{\delta}) \right].$$

Proceeding in the same way one can build two sequences ⟨α_s : s ∈ 2^{<ω}⟩ ⊂ κ and ⟨τ_s : s ∈ 2^{<ω}⟩ ⊂ 2^{<κ} such that:
(3) ∀s ∈ 2^{<ω}∀i ∈ 2 [α_s = dom(τ_s) ∧ α_{s¬(i)} > α_s ∧ τ_{s¬(i)} ⊃ τ_s¬⟨i⟩];
(4) for each s ∈ 2^{<ω} and for each ξ < α_s, x^{1-τ_s(ξ)} ∩ b ∩ (∩_{t⊆s}x^{τ_s(α_t)}) ∈ I(𝔄_δ);
(5) for each s ∈ 2^{<ω}, both x⁰_{α_s} ∩ b ∩ (∩_{t⊆s}x^{τ_s(α_t)}) ∈ I⁺(𝔄_δ) and x¹_{α_s} ∩ b ∩ (∩_{t⊆s}x^{τ_s(α_t)}) ∈ I⁺(𝔄_δ).

Building a completely separable family

- For each $f \in 2^{\omega}$, put $\alpha_f = \sup \{ \alpha_{(f \upharpoonright n)} : n \in \omega \}$ and $\tau_f = \bigcup_{n \in \omega} \tau_{(f \upharpoonright n)}$.
- Note $\alpha_f < \kappa$.

Building a completely separable family

- For each $f \in 2^{\omega}$, put $\alpha_f = \sup \{ \alpha_{(f \upharpoonright n)} : n \in \omega \}$ and $\tau_f = \bigcup_{n \in \omega} \tau_{(f \upharpoonright n)}$.
- Note $\alpha_f < \kappa$.
- Find $f \in 2^{\omega}$ such that $\tau_f \notin \{\sigma \in 2^{<\kappa} : \exists \alpha < \delta \ [\sigma \subset \sigma_{\alpha}]\}.$
- $e \in [b]^{\omega} \cap \mathcal{I}^+(\mathscr{A}_{\delta})$ such that $\forall n \in \omega \ [e \subset^* e_n]$, where $e_n = b \cap \left(\bigcap_{m < n} x_{\alpha_{(f \upharpoonright m)}}^{\tau_f(\alpha_{(f \upharpoonright m)})} \right)$.

Building a completely separable family

• For any $\xi < \alpha_f$, there is $F_{\xi} \in [\delta]^{<\omega}$ such that

$$\left(x_{\xi}^{1-\tau_{f}(\xi)}\cap e\right)\subset^{*}\left(\bigcup_{\alpha\in F_{\xi}}a_{\alpha}\right).$$

• Consider
$$\mathcal{F} = \bigcup_{\xi < \alpha_f} F_{\xi}$$
 and $\mathcal{G} = \{\alpha < \delta : \sigma_{\alpha} \subset \tau_f\}.$
• $|\mathcal{F} \cup \mathcal{G}| < \kappa \leq \mathfrak{a}.$

イロト イポト イヨト イヨト

Building a completely separable family

• For any $\xi < \alpha_f$, there is $F_{\xi} \in [\delta]^{<\omega}$ such that

$$\left(x_{\xi}^{1-\tau_{f}(\xi)}\cap e\right)\subset^{*}\left(\bigcup_{\alpha\in F_{\xi}}a_{\alpha}\right).$$

- Consider $\mathcal{F} = \bigcup_{\xi < \alpha_f} F_{\xi}$ and $\mathcal{G} = \{ \alpha < \delta : \sigma_{\alpha} \subset \tau_f \}.$
- $|\mathcal{F} \cup \mathcal{G}| < \kappa \leq \mathfrak{a}.$
- So there is $a \in [e]^{\omega}$ such that $\forall \alpha \in \mathcal{F} \cup \mathcal{G}[|a \cap a_{\alpha}| < \omega]$.

Building a completely separable family

• For any $\xi < \alpha_f$, there is $F_{\xi} \in [\delta]^{<\omega}$ such that

$$\left(x_{\xi}^{1-\tau_{f}(\xi)}\cap e\right)\subset^{*}\left(\bigcup_{\alpha\in F_{\xi}}a_{\alpha}\right).$$

• Consider
$$\mathcal{F} = \bigcup_{\xi < \alpha_f} F_{\xi}$$
 and $\mathcal{G} = \{\alpha < \delta : \sigma_{\alpha} \subset \tau_f\}.$

- $|\mathcal{F} \cup \mathcal{G}| < \kappa \leq \mathfrak{a}.$
- So there is $a \in [e]^{\omega}$ such that $\forall \alpha \in \mathcal{F} \cup \mathcal{G}[|a \cap a_{\alpha}| < \omega].$
- Now *a* and σ_f are as needed:
 - **1** If $\alpha \in \mathcal{G}$, then *a* and a_{α} are a.d. by choice.
 - 2 If $\alpha \notin \mathcal{G}$, then a_{α} and a are a.d. because $\forall \xi < \alpha_f \left[a \subset^* x_{\xi}^{\sigma_f(\xi)} \right]$.

A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

- When a is small, b is also small.
- Key point: there is a small collection of sets that splits any set of a specific form (even though there are no small splitting families).

The case a < s

- When a is small, b is also small.
- Key point: there is a small collection of sets that splits any set of a specific form (even though there are no small splitting families).

Lemma

Let $\langle c_n : n \in \omega \rangle$ be pairwise disjoint elements of $[\omega]^{\omega}$. Then there is a collection $\langle x_{\alpha} : \alpha < \mathfrak{b} \rangle \subset \mathcal{P}(\omega)$ such that for any $b \in [\omega]^{\omega}$ and any infinite a.d. family $\mathscr{A} \subset [\omega]^{\omega}$, if for all $n \in \omega$ and for all $f \in \omega^{\omega}$, $\bigcup_{m \ge n} \{k \in b \cap c_m : k > f(m)\} \in I^+(\mathscr{A})$, then there is $\alpha < \mathfrak{b}$ such that $x_{\alpha}^0 \cap b \in I^+(\mathscr{A})$ and $x_{\alpha}^1 \cap b \in I^+(\mathscr{A})$.

The case a < s

Proof.

Fix a <*-increasing everywhere unbounded family $\langle f_{\alpha} : \alpha < b \rangle \subset \omega^{\omega}$. For each $\alpha < b$ and $n \in \omega$, let $x_{\alpha,n} = \{k \in c_n : k \leq f_{\alpha}(n)\}$. Let $x_{\alpha} = \bigcup_{n \in \omega} x_{\alpha,n}$. Why does this work?

The case a < s

Proof.

Fix a <*-increasing everywhere unbounded family $\langle f_{\alpha} : \alpha < b \rangle \subset \omega^{\omega}$. For each $\alpha < b$ and $n \in \omega$, let $x_{\alpha,n} = \{k \in c_n : k \leq f_{\alpha}(n)\}$. Let $x_{\alpha} = \bigcup_{n \in \omega} x_{\alpha,n}$. Why does this work? Take any $b \in [\omega]^{\omega}$ and any infinite a.d. family $\mathscr{A} \subset [\omega]^{\omega}$. Assume that *b* satisfies the hypothesis. In particular, for each $n \in \omega$, $\bigcup_{m \geq n} (b \cap c_m)$ is $\mathcal{I}(\mathscr{A})$ -positive. So we can find $d \in [\bigcup_{n \in \omega} (b \cap c_n)]^{\omega} \cap \mathcal{I}^+(\mathscr{A})$ such that $\forall n \in \omega [|d \cap c_n| < \omega]$. Now there are formally 2 cases:

The case a < s

Proof.

Fix a <*-increasing everywhere unbounded family $\langle f_{\alpha} : \alpha < b \rangle \subset \omega^{\omega}$. For each $\alpha < b$ and $n \in \omega$, let $x_{\alpha,n} = \{k \in c_n : k \leq f_{\alpha}(n)\}$. Let $x_{\alpha} = \bigcup_{n \in \omega} x_{\alpha,n}$. Why does this work? Take any $b \in [\omega]^{\omega}$ and any infinite a.d. family $\mathscr{A} \subset [\omega]^{\omega}$. Assume that *b* satisfies the hypothesis. In particular, for each $n \in \omega$, $\bigcup_{m \geq n} (b \cap c_m)$ is $I(\mathscr{A})$ -positive. So we can find $d \in [\bigcup_{n \in \omega} (b \cap c_n)]^{\omega} \cap I^+(\mathscr{A})$ such that $\forall n \in \omega [|d \cap c_n| < \omega]$. Now there are formally 2 cases: Case I: there is $e \in [d]^{\omega}$ which is a.d. from every $a \in \mathscr{A}$. Let $X = \{m \in \omega : e \cap c_m \neq 0\}$. Define $f : X \to \omega$ by $f(m) = \min(e \cap c_m)$. There is $\alpha < b$ such that $\exists^{\infty} m \in X [f(m) \leq f_{\alpha}(m)]$. For any such $m \in X, x_{\alpha,m} \cap e \neq 0$.

So $|x_{\alpha}^{0} \cap e| = \omega$. This implies $x_{\alpha}^{0} \cap d$, and hence $x_{\alpha}^{0} \cap b$ are in $I^{+}(\mathscr{A})$. On the other hand, $x_{\alpha}^{1} \cap b \in I^{+}(\mathscr{A})$ by hypothesis.

イロト イポト イヨト イヨト

н

The case a < s

Proof.

Case II: there are infinitely many $a \in \mathscr{A}$ such that $|a \cap d| = \omega$. Fix such a family $\{a_n : n \in \omega\} \subset \mathscr{A}$. For each $n \in \omega$, let $X_n = \{m \in \omega : a_n \cap d \cap c_m \neq 0\}$. There is $\alpha < b$ such that for each $n \in \omega$, $\exists^{\infty}m \in X_n [c_m \cap d \cap a_n \cap (f_{\alpha}(m) + 1) \neq 0]$. Then for each $n \in \omega$, $|a_n \cap d \cap x_{\alpha}^0| = \omega$. So $d \cap x_{\alpha}^0$ and hence $b \cap x_{\alpha}^0$ are in $I^+(\mathscr{A})$. $x_{\alpha}^1 \cap b$ is in $I^+(\mathscr{A})$ by hypothesis.

The case a < s

• In a sense we only care about splitting things that hit infinitely many c_n , for some collection $\langle c_n : n \in \omega \rangle$.

イロト イポト イヨト イヨト

The case a < s

- In a sense we only care about splitting things that hit infinitely many c_n , for some collection $\langle c_n : n \in \omega \rangle$.
- There is a problem: the collection (c_n : n ∈ ω) that we care about will keep changing at every stage of the construction.
- Solution: make the tree more complicated.

(日)

The case a < s

- In a sense we only care about splitting things that hit infinitely many c_n , for some collection $\langle c_n : n \in \omega \rangle$.
- There is a problem: the collection (c_n : n ∈ ω) that we care about will keep changing at every stage of the construction.
- Solution: make the tree more complicated.
- Main difference: instead of using a sequence of sets (e_α : α < κ), use a tree of sets (e_η : η ∈ 2^{<κ}).
- The pair e^0 , e^1 used at a node of the tree now depends not just on the height of that node, but also on all the pairs of sets that occur below that node.

< ロ > < 同 > < 三 > < 三 > 、

The case a < s

- Along each (long enough) branch ψ of the tree, each countable subset of ψ can be "captured" at some node η that lies on ψ.
- This "captured" countable set determines a collection $\langle c_n : n \in \omega \rangle$.
- The sets that hit infinitely many of the c_n will be split using a small family before ψ is reached.

A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

- Along each (long enough) branch ψ of the tree, each countable subset of ψ can be "captured" at some node η that lies on ψ.
- This "captured" countable set determines a collection $\langle c_n : n \in \omega \rangle$.
- The sets that hit infinitely many of the c_n will be split using a small family before ψ is reached.
- The assumption that s < κ_ω becomes relevant for capturing the countable sets.

The case a < s

Definition

Let κ be any cardinal. A set $X \subset [\kappa]^{\leq \omega}$ is called cofinal if $\forall a \in [\kappa]^{\leq \omega} \exists b \in X [a \subset b].$

$$cf(\langle [\kappa]^{\leq \omega}, \subset \rangle) = \min \left\{ |X| : X \subset [\kappa]^{\leq \omega} \text{ is cofinal} \right\}$$

イロト イポト イヨト イヨト

The case a < s

Definition

Let κ be any cardinal. A set $X \subset [\kappa]^{\leq \omega}$ is called cofinal if $\forall a \in [\kappa]^{\leq \omega} \exists b \in X [a \subset b].$

 $\operatorname{cf}(\langle [\kappa]^{\leq \omega}, \subset \rangle) = \min \left\{ |X| : X \subset [\kappa]^{\leq \omega} \text{ is cofinal} \right\}.$

- For any n < ω, cf(⟨[ℵ]^{≤ω}, ⊂⟩) = ℵ_n (obvious for ℵ₁; by induction for larger n).
- So for any n < ω, there is a sequence ⟨u_α : ω ≤ α < ℵ_n⟩ such that
 u_α ⊂ α and |u_α| = ω;
 if X ⊂ ℵ_n is any uncountable set, then there exists α < sup(X) such that [|u_α ∩ X| = ω].
- If in addition you know that b ≤ ℵ_n, then you can strengthen 1 to say that otp(u_α) = ω; but 2 will only apply to sets order type at least b.

The case a < s

Definition

For cardinals $\kappa > \lambda > \omega$, $P(\kappa, \lambda)$ says that there is a sequence $\langle u_{\alpha} : \omega \leq \alpha < \kappa \rangle$ such that

•
$$u_{\alpha} \subset \alpha$$
 and $|u_{\alpha}| = \omega$

2 for each $X \subset \kappa$, if X is bounded in κ and $\operatorname{otp}(X) = \lambda$, then $\exists \omega \leq \alpha < \sup(X) [|u_{\alpha} \cap X| = \omega].$

The case a < s

Definition

For cardinals $\kappa > \lambda > \omega$, $P(\kappa, \lambda)$ says that there is a sequence $\langle u_{\alpha} : \omega \leq \alpha < \kappa \rangle$ such that

•
$$u_{\alpha} \subset \alpha$$
 and $|u_{\alpha}| = \omega$

2 for each $X \subset \kappa$, if X is bounded in κ and $\operatorname{otp}(X) = \lambda$, then $\exists \omega \leq \alpha < \sup(X) [|u_{\alpha} \cap X| = \omega].$

• If $\mathfrak{b} \leq \lambda < \kappa < \aleph_{\omega}$, then $P(\kappa, \lambda)$ is true.

Theorem (Shelah, 2010 [2])

If a < s and P(s, a) holds, then there is a completely separable family.

 Forcing the failure of the hypothesis needs large cardinals (and unknown if α > ω₁). A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

• At a stage $\delta < \mathfrak{c}$ we have $\mathscr{A}_{\delta} = \langle a_{\alpha} : \alpha < \delta \rangle$, a subtree $\mathcal{T}_{\delta} \subset 2^{<\mathfrak{s}}$, a labeling $\langle e_{\eta} : \eta \in \mathcal{T}_{\delta} \rangle$, and a sequence of nodes $\langle \eta_{\alpha} : \alpha < \delta \rangle \subset \mathcal{T}_{\delta}$ such that for each $\alpha < \delta$:

(日)

A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

- At a stage $\delta < \mathfrak{c}$ we have $\mathscr{A}_{\delta} = \langle a_{\alpha} : \alpha < \delta \rangle$, a subtree $\mathcal{T}_{\delta} \subset 2^{<\mathfrak{s}}$, a labeling $\langle e_{\eta} : \eta \in \mathcal{T}_{\delta} \rangle$, and a sequence of nodes $\langle \eta_{\alpha} : \alpha < \delta \rangle \subset \mathcal{T}_{\delta}$ such that for each $\alpha < \delta$:

 - 2 if σ ∈ 2^s and if σ ↾ ξ ∈ T_δ for all ξ < s, then {e_{σ↾ξ} : ξ < s} is an (ω, ω)-splitting family;</p>

(日)

A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

- At a stage $\delta < \mathfrak{c}$ we have $\mathscr{A}_{\delta} = \langle a_{\alpha} : \alpha < \delta \rangle$, a subtree $\mathcal{T}_{\delta} \subset 2^{<\mathfrak{s}}$, a labeling $\langle e_{\eta} : \eta \in \mathcal{T}_{\delta} \rangle$, and a sequence of nodes $\langle \eta_{\alpha} : \alpha < \delta \rangle \subset \mathcal{T}_{\delta}$ such that for each $\alpha < \delta$:

 - 2 if σ ∈ 2^s and if σ ↾ ξ ∈ T_δ for all ξ < s, then {e_{σ↾ξ} : ξ < s} is an (ω, ω)-splitting family;</p>
 - 3 $|\mathcal{T}_{\delta}| < \mathfrak{c}$ (more precisely \mathcal{T}_{δ} is the union of $< \mathfrak{c}$ chains) and $e_{\eta_{\alpha}} = a_{\alpha}$;

(日)

The case a < s

- At a stage $\delta < \mathfrak{c}$ we have $\mathscr{A}_{\delta} = \langle a_{\alpha} : \alpha < \delta \rangle$, a subtree $\mathcal{T}_{\delta} \subset 2^{<\mathfrak{s}}$, a labeling $\langle e_{\eta} : \eta \in \mathcal{T}_{\delta} \rangle$, and a sequence of nodes $\langle \eta_{\alpha} : \alpha < \delta \rangle \subset \mathcal{T}_{\delta}$ such that for each $\alpha < \delta$:

 - 2 if σ ∈ 2^s and if σ ↾ ξ ∈ T_δ for all ξ < s, then {e_{σ↾ξ} : ξ < s} is an (ω, ω)-splitting family;</p>
 - 3 $|\mathcal{T}_{\delta}| < \mathfrak{c}$ (more precisely \mathcal{T}_{δ} is the union of $< \mathfrak{c}$ chains) and $e_{\eta_{\alpha}} = a_{\alpha}$;
 - For ξ < s, η ∈ 2^ξ ∩ T_δ, a set a ⊂ ξ of order type ω, and n ∈ ω, we use the notation c_{η,a,n} = (∩_{m<n}e^{η(a(m))}_{η↾a(m)}) ∩ e^{1-η(a(n))}_{η↾a(n)}, where a(m) denotes the *m*th element of *a*;

■ If *ξ* < s and if *X* ⊂ *ξ* has order type a and sup(*X*) = *ξ*, then for any $\eta \in 2^{\xi} \cap \mathcal{T}_{\delta}$, there is *a* ⊂ *ξ* with otp(*a*) = ω such that $|a \cap X| = \omega$ and for every $b \in [\omega]^{\omega}$ and any infinite a.d. family $\mathscr{A} \subset [\omega]^{\omega}$, if for all $n \in \omega$ and for all $f \in \omega^{\omega}$, $\bigcup_{m \ge n} \{k \in b \cap c_m : k > f(m)\} \in I^+(\mathscr{A})$, then there is $\zeta < \xi$ such that $b \cap e_{n \upharpoonright \zeta}^0 \in I^+(\mathscr{A})$ and $b \cap e_{n \upharpoonright \zeta}^1 \in I^+(\mathscr{A})$.

The case a < s

- Given ⟨u_α : α < s⟩ witnessing P(s, α), a family ⟨f_α : α < b⟩ witnessing b < s, and an (ω, ω)-splitting family ⟨x_α : α < s⟩, arranging (1)-(5) is just a matter of bookkeeping.
- Details of the bookkeeping are not deep (just messy).

イロト イポト イヨト

A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

- Given ⟨u_α : α < s⟩ witnessing P(s, α), a family ⟨f_α : α < b⟩ witnessing b < s, and an (ω, ω)-splitting family ⟨x_α : α < s⟩, arranging (1)-(5) is just a matter of bookkeeping.
- Details of the bookkeeping are not deep (just messy).
- the idea is that along a branch η , any subset *X* of order type \mathfrak{a} will be "trapped" by some u_{α} .
- This u_{α} determines a collection $\{c_{\eta,u_{\alpha},n} : n \in \omega\}$.
- Together with ⟨*f_β* : β < b⟩ this gives a family {*y_β* : β < b} such that any b that behaves like in the lemma w.r.t. the *c_{η,u_α,n}* is split by one of the *y_β*.
- There is enough space to enumerate the {y_β : β < b} (note: this set does not depend on X) along η; so every b that intersects infinitely many of the c_{η,u_α,n} will be split before η is reached.

3

The case a < s

- At a stage $\delta < \mathfrak{c}$, fix some $b \in I^+(\mathscr{A}_{\delta})$
- By clause (2), we can once again build sequences (α_s : s ∈ 2^{<ω}) ⊂ s and (τ_s : s ∈ 2^{<ω}) ⊂ T_{δ+1} as before.
- As before, for any $f \in 2^{\omega}$, if $\tau_f = \bigcup_{n \in \omega} \tau_{(f \restriction n)}$ and if $\alpha_f = \sup \{ \alpha_{(f \restriction n)} : n \in \omega \}$, then $\alpha_f < \mathfrak{s}$, and $b \cap e_{\tau_{(f \restriction 0)}}^{\tau_f(\alpha_{(f \restriction 0)})} \supset b \cap e_{\tau_{(f \restriction 0)}}^{\tau_f(\alpha_{(f \restriction 0)})} \cap e_{\tau_{(f \restriction 1)}}^{\tau_f(\alpha_{(f \restriction 1)})} \supset \cdots$ is a decreasing sequence of sets in $\mathcal{I}^+(\mathscr{A}_{\delta})$.

イロト イポト イヨト イヨト

The case a < s

- At a stage $\delta < \mathfrak{c}$, fix some $b \in \mathcal{I}^+(\mathscr{A}_{\delta})$
- By clause (2), we can once again build sequences (α_s : s ∈ 2^{<ω}) ⊂ s and (τ_s : s ∈ 2^{<ω}) ⊂ T_{δ+1} as before.
- As before, for any $f \in 2^{\omega}$, if $\tau_f = \bigcup_{n \in \omega} \tau_{(f \restriction n)}$ and if $\alpha_f = \sup \{ \alpha_{(f \restriction n)} : n \in \omega \}$, then $\alpha_f < \mathfrak{s}$, and $b \cap e_{\tau_{(f \restriction 0)}}^{\tau_f(\alpha_{(f \restriction 0)})} \supset b \cap e_{\tau_{(f \restriction 0)}}^{\tau_f(\alpha_{(f \restriction 0)})} \cap e_{\tau_{(f \restriction 1)}}^{\tau_f(\alpha_{(f \restriction 1)})} \supset \cdots$ is a decreasing sequence of sets in $\mathcal{I}^+(\mathscr{A}_{\delta})$.
- Choose *f* ∈ 2^ω such that τ_f ∉ T_δ and choose *e* ∈ [*b*]^ω ∩ *I*⁺(𝔄_δ) that is almost included in this decreasing sequence.

イロト 不得 トイヨト イヨト

The case a < s

- As before, for any $\xi < \alpha_f$, there is a minimal $F_{\xi} \in [\delta]^{<\omega}$ such that $e \cap e_{(\tau_f) \models \xi}^{1-\tau_f(\xi)} \subset^* \bigcup_{\alpha \in F_{\xi}} a_{\alpha}$.
- Recall clause (3) which says that for any $\alpha < \delta$, $e_{\eta_{\alpha}} = a_{\alpha}$.
- For any α < δ, if η_α ⊂ τ_f, then dom(η_α) < α_f and τ_f(dom(η_α)) = 1 because of this clause.

The case a < s

- As before, for any $\xi < \alpha_f$, there is a minimal $F_{\xi} \in [\delta]^{<\omega}$ such that $e \cap e_{(\tau_f) \nmid \xi}^{1-\tau_f(\xi)} \subset^* \bigcup_{\alpha \in F_{\xi}} a_{\alpha}$.
- Recall clause (3) which says that for any α < δ, e_{ηα} = a_α.
- For any α < δ, if η_α ⊂ τ_f, then dom(η_α) < α_f and τ_f(dom(η_α)) = 1 because of this clause.
- Conclusion: It is enough to find $a \in [e]^{\omega}$ such that $\forall \xi < \alpha_f \left[a \subset^* e_{(\tau_f) \upharpoonright \xi}^{\tau_f(\xi)} \right].$

The case a < s

- Consider the collection G of all ζ < α_f for which there is x ∈ [e]^ω such that:
 - $\forall \xi < \zeta \left[x \subset^* e_{(\tau_f) \upharpoonright \xi}^{\tau_f(\xi)} \right];$ • $x \cap e_{(\tau_f) \upharpoonright \xi}^{1-\tau_f(\zeta)}$ is infinite.

(日)

The case a < s

Consider the collection G of all ζ < α_f for which there is x ∈ [e]^ω such that:

$$\forall \xi < \zeta \left[x \subset^* e_{(\tau_f) \upharpoonright \xi}^{\tau_f(\xi)} \right]; \\ x \cap e_{(\tau_f) \upharpoonright \zeta}^{1 - \tau_f(\zeta)} \text{ is infinite.}$$

- If $|G| < \mathfrak{a}$, then we can find $a \in [e]^{\omega}$ as needed.
- Why? $|\bigcup_{\zeta \in G} F_{\zeta}| < \mathfrak{a}$. Take $a \in [e]^{\omega}$ which is a.d. from everything in $\bigcup_{\zeta \in G} F_{\zeta}$.
- Suppose there exists $\zeta < \alpha_f$ such that $\left| a \cap e_{(\tau_f) \uparrow \zeta}^{1-\tau_f(\zeta)} \right| = \omega$. Take the least such ζ . Then *a* witnesses that $\zeta \in G$, which is a contradiction.

イロト イロト イヨト イヨト

The case a < s

- So assume that $|G| \ge \mathfrak{a}$.
- Let $\xi \leq \alpha_f$ be minimal such that $otp(G \cap \xi) = \mathfrak{a}$.
- Apply clause (5) to ξ with η = τ_f ↾ ξ, X = G ∩ ξ, to get a ⊂ ξ of order type ω with the property given in the clause.
- We wish to use this property of the set *a* with b = e and $\mathscr{A} = \mathscr{A}_{\delta}$.

The case a < s

- So assume that $|G| \ge \mathfrak{a}$.
- Let $\xi \leq \alpha_f$ be minimal such that $otp(G \cap \xi) = \mathfrak{a}$.
- Apply clause (5) to ξ with η = τ_f ↾ ξ, X = G ∩ ξ, to get a ⊂ ξ of order type ω with the property given in the clause.
- We wish to use this property of the set *a* with b = e and $\mathscr{A} = \mathscr{A}_{\delta}$.
- If we succeed, then we will get a ζ < ξ ≤ α_f such that both e⁰_{(τ_f) ↾ζ} ∩ e and e¹_{(τ_f) ↾ζ} ∩ e.

A completely separable family from $s \le a$ A completely separable family from $c < \aleph_{\omega}$ Bibliography

The case a < s

- So assume that $|G| \ge \mathfrak{a}$.
- Let $\xi \leq \alpha_f$ be minimal such that $otp(G \cap \xi) = \mathfrak{a}$.
- Apply clause (5) to ξ with η = τ_f ↾ ξ, X = G ∩ ξ, to get a ⊂ ξ of order type ω with the property given in the clause.
- We wish to use this property of the set *a* with b = e and $\mathscr{A} = \mathscr{A}_{\delta}$.
- If we succeed, then we will get a ζ < ξ ≤ α_f such that both e⁰_{(τ_f)tζ} ∩ e and e¹_{(τ_f)tζ} ∩ e.
- It suffices to produce a sequence $\langle a_n :\in \omega \rangle$ of distinct elements of \mathscr{A}_{δ} and an increasing sequence $\langle k_n : n \in \omega \rangle$ of elements of ω such that $|e \cap a_n \cap c_{\eta,a,k_n}| < \omega$.

イロト 不得 トイヨト イヨト

The case a < s

- Note that if $a(k) \in X$, then there is $a \in F_{a(k)}$ such that $e \cap a \cap c_{\eta,a,k}$ is infinite.
- By the minimality of $F_{a(k)}$, if k < l and $a(k) \in X$ and $a(l) \in X$, then $F_{a(k)} \cap F_{a(l)} = 0$.
- Since $a \cap X$ is infinite, we are done!

イロト イポト イヨト イヨト

The case a < s

- Note that if $a(k) \in X$, then there is $a \in F_{a(k)}$ such that $e \cap a \cap c_{\eta,a,k}$ is infinite.
- By the minimality of $F_{a(k)}$, if k < l and $a(k) \in X$ and $a(l) \in X$, then $F_{a(k)} \cap F_{a(l)} = 0$.
- Since $a \cap X$ is infinite, we are done!
- So this contradiction shows that |G| < α. So we can find a_δ and η_δ as needed (η_δ = τ_f).

Bibliography

- H. Mildenberger, D. Raghavan, and J. Steprāns, *Splitting families and complete separability*, Canad. Math. Bull., accepted.
- S. Shelah, *MAD saturated families and SANE player*, Canad. J. Math.
 63 (2011), no. 6, 1416–1435.

(日)